壓力調節閥氣蝕解決 電動壓力調節閥氣蝕解決 氣動壓力調節閥氣蝕解決 自力式 調節閥氣蝕解決 不銹鋼 調節閥壓力 帶反饋壓力調節閥氣蝕
之前介紹組合式減壓閥在國華惠州熱電應用,現在介紹在使用壓力調節閥的時候,可以發現壓力調節閥會出現氣蝕的情況,那么我們該如何做來避免壓力調節閥發生氣蝕的情況呢?
1.出現蝕和閃蒸的原因分析
1.1 流體在調節閥中的流動過程
液體在調節閥的流道中的流動過程是極其復雜的,根據連續性方程:
uAp=常數
式中u——截面平均流速,m/s;
A—— 流道截面積,m2;
p—流體介質的密度,kg/m3。
對于不可壓縮的流體,p=常數,因此uA=常數,亦即流體的流速和通過該截面的截面積成反比。
同時,又根據伯努利方程式[1]:
式中z——位置標高,m;
p——靜壓強,Pa;
g—— 重力加速度,kg•m/s2。
忽略管道進出口流體的位置標高差別,如果通過截面時的流速增大,則意味著斷面的壓力將下降,當流體的壓力下降到該溫度下的飽和壓力Pv時,液體將出現汽化,同時發生汽蝕或閃蒸現象。
由于汽蝕現象和閃蒸現象對設備有較大的破壞力。我們以前僅對離心泵的汽蝕現象研究較多,而對管路中調節閥可能產生的汽蝕和閃蒸現象造成的破壞未引起足夠重視,因此研究防止液體在流動過程中產生汽蝕和閃蒸的機理將顯得更加重要。
1.2 流體流經調節閥前后的壓力變化分析
圖1是液體通過調節閥調節窗口(節流孔)的各點的壓力變化曲線
上海申弘閥門有限公司主營閥門有:減壓閥(組合式減壓閥,可調式減壓閥,自力式減壓閥假設閥門前后的管徑相同,液體在調節閥窗口前、后的相當長的距離內,液體一直處于穩定流動,同時不考慮液體的位能及節流前后的溫度變化,則根據連續性的方程,u1=U2。
Pl、p3——入口壓力及出口壓力
P2——小截面處(調節閥窗口)壓力
U1、u2——入口流速及出口流量
從圖1中看出,當液體通過調節閥窗口時可能有三種工況:
(1)液體通過調節閥窗口時,因液體流速增大,造成壓力降低,如圖1中的曲線I所示。但P2大于當時液體溫度下的相應的飽和壓力,在這種工況下,液體通過調節窗口后不會發生汽蝕和閃蒸現象。
(2)當液體通過調節窗口時,液體的壓力小于或等于當時液體溫度下的相應的飽和壓力,如圖1中曲線Ⅱ所示。根據汽蝕理論的研究,此時在金屬表面某處形成一個穩定的汽蝕區,汽泡在金屬表面的不斷形成和增長,同時隨著流體下移壓力回升(即速度能轉變為壓力能),當該處的液體壓力大于當時液體溫度下的飽和壓力時,則汽泡破裂(凝聚),而汽蝕正是由于這些汽泡的反復破裂所引起的。當汽泡破裂時,周圍液體即迅速地填充破裂汽泡的空間,沖入的流體形成高速而沖擊金屬表面[2]。據美國某研究所測得汽蝕汽泡中心部位的壓力高達2.0×103MPa,由于汽泡破裂產生的沖擊金屬表面,好似微小的高強度錘子反復錘擊金屬表面,導致表面疲勞。同時,汽泡破裂產生的局部溫度也可能達至攝氏幾千度,這種高溫“過熱點”在金屬表面的累積,引起金屬表面撕裂,出現蜂窩狀的凹坑,并逐步深入金屬本體,脫落下來的小塊像飽含氣孔的焦炭一樣,很容易辨認。
因大部分汽蝕汽泡遠離金屬表面,汽泡破裂產生的沖擊波對金屬表面的損壞不大,只有在金屬表面產生和增長的汽泡又同時在金屬表面破裂或者在接近金屬表面破裂,產生的沖擊波才會造成設備損壞。
(3)當液體通過調節窗口時,液體的壓力降低于當時液體溫度下相應的飽和壓力,而且閥門后的出口壓力仍然低于相應的飽和壓力,所以液體通過調節閥窗口后,部分液體即發生汽化,產生兩相流,汽泡有時合并、破裂和產生蒸汽,這種過程為閃蒸,如圖1中曲線Ⅲ所示。
受閃蒸破壞的金屬表面沒有蜂窩狀的凹坑,而是大塊剝落,很易區別。
1.改進閥芯,閥座設計,使其具有合理的液流速度分布和壓力分布。如小流量調節閥采用狹長通道式閥芯、閥座。閥芯、閥座孔都有很小的錐度,適用于在恒定的上游壓力條件下地控制流量。由于這種 結構具確吸收 能量,減小氣蝕的功能,據資料報導,它曾用于4200公斤/厘米2 的壓降下。
2、在 條件充許的 情況下,在液流中充氣,以局部地或全部地消除低壓區。
3。閥門串聯使用,以減小每個閥的壓降。
4.使閥前后壓差低于該介質在調節閥入口溫度下產生汽蝕現象的大允許壓差。
5.介質在“流開”狀態下工作,允許壓差比“流閉”狀態大三倍多。與本產品相關論文:200X先導隔膜式水用減壓閥安裝要求