調節閥流量特性 上海申弘閥門有限公司 1 概述 在自動控制系統中,調節閥是其常用的執行器。控制過程是否平穩取決于調節閥能否準確動作,使過程控制體現為物料能量和流量的變化。上海申弘閥門有限公司主營閥門有:減壓閥(氣體減壓閥,可調式減壓閥,波紋管減壓閥,活塞式減壓閥,蒸汽減壓閥,先導式減壓閥,空氣減壓閥,氮氣減壓閥,水用減壓閥,自力式減壓閥,比例減壓閥)、安全閥、保溫閥、低溫閥、球閥、截止閥、閘閥、止回閥、蝶閥、過濾器、放料閥、隔膜閥、旋塞閥、柱塞閥、平衡閥、調節閥、疏水閥、管夾閥、排污閥、排氣閥、排泥閥、氣動閥門、電動閥門、高壓閥門、中壓閥門、低壓閥門、水力控制閥、真空閥門、襯膠閥門、襯氟閥門。所以,要根據不同的需要選擇不同的調節閥。選擇恰當的調節閥是管路設計的主要問題,也是保證調節系統安全和平穩運行的關鍵。 2 調節閥的組成 調節閥由執行機構和調節機構組成,接受調節器或計算機的控制信號,用來改變被控介質的流量,使被調參數維持在所要求的范圍內,從而達到過程控制的自動化。 2.1 執行機構 執行機構按照驅動形式分為氣動、電動和液動3種。氣動執行機構具有結構簡單,動作可靠,性能穩定,價格低,維護方便,防火防爆等優點,在許多控制系統中獲得了廣泛地應用。電動執行機構雖然不利于防火防爆,但其驅動電源方便可取,且信號傳輸速度快,便于遠距離傳輸,體積小,動作可靠,維修方便,價格便宜。液動執行器的推力大,調節精度高,動作速度快,運行平穩,但由于設備體積大,工藝復雜,所以目前使用不多。 執行機構不論是何種類型,其輸出力都是用于克服負荷的有效力(主要是指不平衡力和不平衡力矩、摩擦力、密封力及重力等有關力的作用)。因此,為了使調節閥正常工作,配用的執行機構要能產生足夠的輸出力來克服各種阻力,保證高度密封和閥門的開啟。對執行機構輸出力確定后。應根據工藝使用環境要求,選擇相應的執行機構。例如,對于現場有防爆要求時,應選用氣動執行機構,且接線盒為防爆型。如果沒有防爆要求,則氣動或電動執行機構都可選用,但從節能方面考慮,應盡量選用電動執行機構。對于要求調節精度高,動作速度快和運行平穩的工況,應選用液動執行機構。 綜合各類執行器的特點,自動控制系統普遍采用電動執行機構。如結構簡單、體積小的 ZAZ 直行程類及 ZAJ 角行程類,3610L(R) 型電子式及SKD型多轉電動執行機構等。各類執行機構盡管在結構上不*相同,但基本結構都包括放大器、可逆電機、減速裝置、推力機構、機械限位組件、彈性聯軸器和位置反饋等部件(圖 1)。 電動執行機構的方框圖 圖1 電動執行機構的方框圖 電動執行機構一般需要與伺服放大器配套,接受調節器的信號,該信號經過伺服放大器放大后轉換為三位繼電信號,控制可逆電機正轉或反轉,帶動調節機構,使閥開啟或關閉。 2.2 調節機構 調節閥門是調節閥的調節機構,它根據控制信號的要求而改變閥門開度的大小來調節流量,是一個局部阻力可以變化的節流元件。調節閥門主要由上下閥蓋、閥體、閥瓣、閥座、填料及壓板等部件組成。在自動控制系統中,閥門主要的調節介質為水和蒸汽等。在壓力比較低,使用情況單一的情況下,常用的調節閥有直通調節閥、三通調節閥和蝶閥等。 直通閥有直通單座閥和雙座閥之分。單座閥結構簡單,價格低廉,關閉時泄漏量小,但由于閥座前后存在的壓差對閥瓣產生的不平衡力較大,所以適用于低壓差的場合,例如供水管或回水管中。雙座閥有兩個閥瓣閥座,在其關閉狀態時,兩個閥瓣的受力可部分抵消,閥瓣所受的不平衡力小,但是由于熱脹冷縮效應,其同時關閉性較差,造價也較高,只適用于閥前后壓差較高但密閉要求不高的場合,例如供水或回水之間的壓差旁通閥。 三通閥有三個出入口與管道相連,總進水量較恒定,適用于定水量系統中,并要求有固定的安裝方向,不宜反裝,不適于溫差較大場合。三通調節閥有合流閥與分流閥之分。合流閥是將來自兩個入口的流體混合至一個出口。分流閥則是將一個入口的流體分別由兩個口送出。 蝶閥結構較簡單,由閥體、蝶板軸及軸封等部分組成,其行程為 0°~90°。蝶閥有兩位式控制和比例控制 2 種方式。蝶閥的特點是阻力損失小,體積小,質量輕,安裝方便,并且開啟閥門和關閉閥門的允許壓差較大,但其調節性能和關閥密閉性能較差,通常用于壓差較大但調節性能要求不高的場所。除用作兩通閥外,還可以用兩個蝶閥組合,完成三通閥的功能。在自動控制系統中,開/關型電動蝶閥常用于冷水和熱水系統中,作為水路的連通和關斷控制。閥門/調節閥流量系數(CV值)與開度是兩個不同的概念,CV值名稱起源于西方的工業流程控制領域對于閥門流量系數的定義。在中國通常稱為:KV值,KV表示的是閥門的流通能力,其定義是:當調節閥全開時,閥門前、后兩端的壓差ΔP為100KPa,流體重度r為1gf/cm3(即常溫水)時,每小時流經調節閥的流量數,以m3/h或t/h計。 (例如一臺Kv=50的調節閥,則表示當閥兩端壓差為100KPa時,每小時的水量為50m3/h。) 閥門開度是指閥門在調節的時候,閥芯(或閥板)改變流道節流面積時閥芯(或閥板)運動的位置,通常用百分比表示,關閉狀態為0%,全開為99%。 單位換算 Kv與Cv值的換算 國外,流量系數常以Cv表示,其定義的條件與國內不同。Cv的定義為:當調節閥全開,閥兩端壓差ΔP為1磅/英寸²,介質為60℉清水時每分鐘流經調節閥的流量數,以加侖/分計。由于Kv與Cv定義不同,試驗所測得的數值不同,它們之間的換算關系為:Cv=1.167Kv 試驗系統 閥門的流量系數是衡量閥門流通能力的指標,流量系數值大,說明閥門的流通能力大,流體流過閥門時的壓力損失小。在用試驗進行閥門流量系數的測試時,由于測量裝置和方法的不同,會使試驗結果相差很大。因此測定壓降差時,應考慮取壓點的位置、閥門前后的配管狀況、流體的雷諾數和可壓縮氣體的馬赫數等因素的影響。本文論述按JB/T 5296- 91進行流量試驗時要注意的事項,并與BS EN1267 - 1999進行比較,以實例說明雷諾數對閥門流量試驗結果的影響。由于國內流量試驗裝置的限制,只能進行DN600以下閥門的流量試驗,更大口徑的閥門可以采用空氣進行試驗,本文不討論。 流量試驗系統(圖1)由流量計、溫度計、節流閥、試驗閥和壓差測量裝置等組成。系統中上游節流閥用來控制試驗段的入口壓力,其與下游節流閥一起用來控制取壓口之間的壓差,并使下游壓力保持穩定,下游節流閥的公稱尺寸可大于試驗閥門的公稱尺寸,以確保產生阻塞流時,阻塞流是發生在試驗閥內。 3 性能 3.1 工作原理 根據流體力學可知,調節閥是一個局部阻力可以變化的節流元件。對不可壓縮流體,調節閥的流量可表示為: 調節閥流量公式 式中:Q–調節閥某一開度的流量,mm3/s P1–調節閥進口壓力,MPa P2–調節閥出口壓力,MPa A–節流截面積,mm2 ξ–調節閥阻力系數 ρ–流體密度,kg/mm3 由式(1)可知,當 A 一定,ΔP=P1-P2 也恒定時,通過閥的流量 Q 隨阻力系數 ξ 變化,即阻力系數 ξ 愈大,流量愈小。而阻力系數 ξ 則與閥的結構和開度有關。所以調節器輸出信號控制閥門的開或關,可改變閥的阻力系數,從而改變被調介質的流量。 3.2 流量特性 調節閥的流量特性是指被調介質流過調節閥的相對流量與調節閥的相對開度之間的關系。其數學表達式為: 調節閥的相對流量與調節閥的相對開度之間的關系 式中:Qmax–調節閥全開時流量,mm3/s L—-調節閥某一開度的行程,mm Lmax–調節閥全開時行程,mm 調節閥的流量特性包括理想流量特性和工作流量特性。理想流量特性是指在調節閥進出口壓差固定不變情況下的流量特性,有直線、等百分比、拋物線及快開 4 種特性(表1)。 表1 調節閥 閥門流量系數 流量系數的概念,對于閥門,流量系數的選擇與口徑的選擇是相對應的,閥門流量系數為流量計算時使用之系數,現在使用的符號很雜,其實美國、日本多用Cv這個符號和概念,歐洲多用Kvs這個符號和概念,英國用fp,單位應該是Kv,Kv也是我國調節閥傳統用流量系數代號。在標準中,Kv值是這樣定義的:指壓力降為1Bar時流過調節閥的每小時立方米,流量系數的計算有如下的公式: 式中:Q—大流量m3/h G—比重(一般用1) P1—進口壓力bar P2—出口壓力bar △P=P1-P2 bar 而且Cv與Kv的關系如下: Cv=1.17Kv,實際上準確點說Cv=1.167Kv,而Kv和Kvs是相當的。 理論上講,在不同的空調回路中,ΔP值是不同的,是一個動態變化的值,對Cv/Kv計算影響還是比較大的。當閥門公斤級不變時,ΔP選擇的越大,相應的口徑就卻小,對介質的可控制能力就越大,但流通能力卻越小,口徑過小的閥門一方面達不到系統的容量要求,另一方面閥門將需要通過系統提供較大的壓差以維持足夠的流量,加重泵的負荷,閥門易受損害;閥門口徑過大會使控制性能變差,易使系統受沖擊和振蕩,而且投資也會增加。閥門過大過小都會帶來控制閥壽命縮短和維護不便的后果。 所以我們選擇閥門壓力降時,盡可能選得大一些,而且壓力降的大小在系統運行中能恒定,這樣也能保證閥門的流量特性恒定,能夠保證PI調節有好的效果,當壓力降的大小占總供回水壓力降的比重越大時,壓力的波動對于壓力降的大小影響越小時。但壓力降不能太大,要考慮到大允許壓力降和允許的泵壓等。因此,有經驗指出,一般應該這樣來選擇:使閥門全開時的壓力降等于或接近供回水之間總壓力降的50%。一般供回水系統的壓差在 2-4Bar。這樣空調閥門上的壓力降一般選擇為1-2Bar。 在有了壓力降后我們還要知道閥門的額定流量,有的時候設計院會直接給出,或者我們根據冷量計算出來 冷量和流量之間可以根據如下公式計算: 冷量或熱量的計算 設備(或裝置)的冷量(或熱量)按如下公式計算: Q=G×C×△t/3600 G=L×ρ 式中: Q----冷量或熱量,KW; L----流體的體積流量,m3/h; G----流體的質量流量,T/h; ρ---流體的容重,T/m3; C----流體的比熱,J/Kg; △t----進出口流體溫差,℃。 水的比熱是4184 J/Kg.℃ 這樣我們計算出來的Cv/Kv值后就可以選擇閥門了,閥門的額定值比計算值稍大即可
4 種理想流量特性 流量特性 性質 特點 直線 調節閥的相對流量與相對開度呈直線關系,即單位相對行程變化引起的相對流量變化是一個常數 ① 小開度時,流量變化大,而大開度時流量變化小 ② 小負荷時,調節性能過于靈敏而產生振蕩,大負荷時調節遲緩而不及時 ③ 適應能力較差 等百分比 單位相對行程的變化引起的相對流量變化與此點的相對流量成正比 ① 單位行程變化引起流量變化的百分率是相等的 ② 在全行程范圍內工作都較平穩,尤其在大開度時,放大倍數也大。工作更為靈敏有效 ③ 應用廣泛,適應性強 拋物線 特性介于直線特性和等百分比特性之間,使用上常以等百分比特性代之 ① 特性介于直線特性與等百分比特性之間 ② 調節性能較理想但閥瓣加工較困難 快開 在閥行程較小時,流量就有比較大的增加,很快達大 ① 在小開度時流量已很大,隨著行程的增大,流量很快達到大 ② 一般用于雙位調節和程序控制 在實際系統中,閥門兩側的壓力降并不是恒定的,使其發生變化的原因主要有兩個方面。一方面,由于泵的特性,當系統流量減小時由泵產生的系統壓力增加。另一方面,當流量減小時,盤管上的阻力也減小,導致較大的泵壓加于閥門。因此調節閥進出口的壓差通常是變化的,在這種情況下,調節閥相對流量與相對開度之間的關系。稱為工作流量特性。具體可分為串聯管道時的工作流量特性和并聯管道時的工作流量特性。 (1)串聯管道時的工作流量特性 調節閥與管道串聯時,因調節閥開度的變化會引起流量的變化,由流體力學理論可知,管道的阻力損失與流量成平方關系。調節閥一旦動作,流量則改變,系統阻力也相應改變,因此調節閥壓降也相應變化。串聯管道時的工作流量特性與壓降分配比有關。閥上壓降越小,調節閥全開流量相應減小,使理想的直線特性畸變為快開特性,理想的等百分比特性畸變為直線特性。在實際使用中,當調節閥選得過大或生產處于非滿負荷狀態時,調節閥則工作在小開度,有時為了使調節閥有一定的開度,而將閥門開度調小以增加管道阻力,使流過調節閥的流量降低,實際上就是使壓降分配比值下降,使流量特性畸變,惡化了調節質量。 (2)并聯管道時的工作流量特性 調節閥與管道并聯時,一般由閥支路和旁通管支路組成,調節閥安裝在閥支路管路上。調節閥在并聯管道上,在系統阻力一定時,調節閥全開流量與總管大流量之比隨著并聯管道的旁路閥逐步打開而減少。此時,盡管調節閥本身的流量特性無變化,但系統的可調范圍大大縮小,調節閥在工作過程中所能控制的流量變化范圍也大大減小,甚至起不到調節作用。要使調節閥有較好的調節性能,一般認為旁路流量多不超過總流量的 20%。 4 調節閥的選擇 4.1 流量特性選擇 流量特性的選擇方法有兩種,一種是通過數學計算的分析法,另一種是在實際工程中總結的經驗法。由于分析法既復雜又費時,所以一般工程上都采用經驗法。具體來說,應該從調節質量、工況條件、負荷及特性幾個方面考慮。 (1)根據自動調節系統的調節質量 根據自動控制原理中的特性補償原理,為了使系統保持良好的調節質量,希望開環總放大系數與各環節放大系數之積保持常數。這樣,適當選擇閥的特性,以閥的放大系數變化來補償對象放大系數的變化,從而使系統的總放大系數保持不變。 (2)根據管道系統壓降變化情況 調節閥的壓降比 S 定義為該調節閥可控制的大流量所對應閥門進出口差壓 ΔP1m 和系統差壓 ΔP 之比: 調節閥的壓降比計算公式 調節閥流量特性與壓降比S有密切的關系(表2)。 表2 管道系統壓降選擇調節閥特性 管道系統壓降比 S 1~0.6 0.6~0.3 0.3~0 實際工作流量特性 直線 等百分比 直線 等百分比 調節不適宜 所選流量特性 直線 等百分比 等百分比 等百分比 (3)根據負荷變化 直線閥在小開度時流量變化大,調節過于靈敏,易振蕩。在大開度時,調節作用又顯得微弱,造成調節不及時,不靈敏。因此在壓降比S較小,負荷變化大的場合不宜采用直線閥。等百分比閥在接近關閉時工作緩和平穩,而接近全開狀態時,放大系數大,工作靈敏有效,因此它適用于負荷變化幅度大的場合。快開特性閥在行程較小時,流量就較大,隨著行程的增大,流量很快達到大,它一般用于雙位調節和程序控制的場合。 (4)根據調節對象的特性 一般有自平衡能力的調節對象都可選擇等百分比流量特性的調節閥,不具有自平衡能力的調節對象則選擇直線流量特性的調節閥。
4.2 口徑選擇 調節閥口徑是根據工藝要求的流通能力確定的,要根據提供的工藝條件計算出調節閥的流通能力,再依據其流通能力選擇調節閥的口徑。流通能力是指當調節閥全開,閥兩端壓差為 9.81×104Pa,流體的密度為 1g/cm3 時,每小時流經調節閥的流量值,該值以 m3/h 或 kg/h 為單位。調節閥的流通能力是合理選擇閥門及閥門口徑的一個重要參數,通過對調節閥流通能力的計算,對比廠家提供的技術參數確定閥門口徑的大小。對于自動控制系統來說,水是流經調節閥的常見的介質之一,所以以水為例介紹調節閥的流通能力 C: 調節閥的流通能力計算公式 實際工程中,閥門口徑是分級的,C 值通常也不是連續值(公式計算的 C 值是連續的)。不同廠商的同類型產品有不同的 C 值與口徑對應表。在計算出期望的 C 值后,就可以查閱生產商的相應產品數據表來決定所需的閥門口徑。選取閥門口徑的原則應盡可能接近或大于計算結果,不應小于計算結果。 4.3 選用注意事項 (1)調節閥直接按照接管管徑選取是不合理的。閥門的調節品質與接管流速或管徑沒有關系,閥門的調節品質僅與水的阻力及流量有關。亦即一旦系統設備確定之后,理論上適合該系統的閥門只有一種理想的口徑,而不會出現多種選擇。 (2)調節閥口徑不能過小。選擇的閥門口徑過小,一方面會增加系統的阻力,甚至會出現閥門口徑 99% 開啟時,系統仍無法達到設定的容量要求,導致嚴重后果。另一方面閥門將需要通過系統提供較大的壓差以維持足夠的流量,加重泵的負荷,閥門易受損害,對閥門的壽命影響很大。 (3)調節閥口徑不能過大。選擇的閥門口徑過大,不僅增加工程成本,而且還會引起閥門經常運行在低百分比范圍內,引起調節精度降低,使控制性能變差,而且易使系統受沖擊和振蕩。 (4)為了保證系統控制品質,的方法是在系統允許的范圍內選擇能獲得較大壓力降的閥門口徑,使閥門在運轉過程中壓力降的變化值盡可能小。閥門全開狀態下的壓力降占全泵壓百分比越高,則閥門壓力降相對變化值越小,閥門的安裝特性就越接近其內在特性。 (5)控制系統中調節閥應盡可能工作于恒定的壓力降條件下,因為閥門是否匹配盤管依賴于它的內在特性和流量因子,而這些閥門參數取決于恒定的閥門壓力降。 5 結語 設計調節閥時,要求對調節閥的組成、分類和特性有一個清楚的認識,并在此基礎上掌握正確的選擇方法。而且,對于一個實際系統配置調節閥時,還需要對整個管系環路進行詳盡的分析,綜合考慮各種因素。只有這樣,才能正確地選擇調節閥,保證調節系統的控制質量。與本文相關的論文有:五陽煤礦應用閥門案例
|